COMPARISON OF SENSOR BASED AND SENSOR LESS TECHNIQUE TO ESTIMATE ROTOR POSITION

SHARAD GOYAL, MANISHA DUBEY

1M.Tech Scholar, Maulana Azad National Institute of Technology Bhopal
2Professor, Department of Electrical Engineering, MANIT Bhopal
Email: sharad79284@gmail.com, md_mact@yahoo.co.in

Abstract- In this paper comparison on rotor position estimation method based on Hall-effect sensors and sliding mode observer (SMO) is presented. The estimation of phase or the rotor angle of Permanent-magnet Synchronous Motor (PMSM) is essential parameter which is required to control the drives. Due to low cost & wide ranging performance, Low-resolution Hall sensor is widely used in PMSM. Sliding mode observer is a sensor less technique for which control algorithm is implemented. As a result SMO has shown better performance during sudden load changing condition while under steady state condition Hall sensors shown better performance. At starting Hall sensors has sensed the rotor angle effectively but SMO has depressed in this area. Results of Matlab/Simulink have shown comparison of both angle estimation techniques at different situation.

Keywords- Comparative study, Hall Effect sensor, PMSM, Sliding Mode Observer

I. INTRODUCTION

Introduction: Permanent Magnet Synchronous Motors are being widely used in many industrial applications due to high torque, power density, robustness, less maintenance, compact size and high efficiency. It has shown many other advantages due to absence of brushes. Various control schemes also has evolved to control the PMSM drive system. But in each control scheme to estimate the rotor position has always been the important task. Generally sensors were using to get the information of rotor position such as hall sensors, resolver, encoder etc. However installation of these mechanical sensors increases the size and cost of drive installation. Therefore in order to reduce the cost, noise, maintenance and complexity various sensorless based schemes developed to extract rotor position such as observer based, back EMF method, flux estimation, Kalman filter and signal injection technique. Among these techniques sliding mode observer is widely used due to easy algorithm and also has shown desirable performance on changing the load and parameter.

In this paper rotor position of PMSM is estimated using Hall Effect sensors and SMO, and results are compared on acceleration, deceleration and steady state conditions. The rotor position with high-resolution can be easily estimated through a various method based on Hall sensors which have proposed in. The phase angle has estimated using average rotor speed where the six states are classified according to the Hall sensor’s signals. SMO technique used in this paper used high switch gain with self-adaption rate to avoid oscillation during parameter variation. Design of Sliding Mode Observer is presented with sensorless control scheme. Results are obtained by simulation and are concluded with comparison.

II. HALL EFFECT SENSORS BASED TECHNIQUE

Here two pole PMSM is modeled with misaligned Hall Effect sensors. According to the Low resolution hall sensors position, the information of rotor position can be obtained with a resolution of ±30°.

The method based on average rotor speed can easily estimate the rotor position with high resolution. The six sectors are divided according to the states of the Hall sensor’s signals. Algorithm obtained from Taylor series expansion for rotor position estimation is of zeroth order. The rotor speed within a single sector is assumed constant and uniform speed in current and previous sector as well. And rotor speed can be defined as:

$$
\omega_{h} = \frac{\pi}{3} \frac{1}{\Delta t} \tag{1}
$$

Where ω_{h} is time duration of rotor magnetic axis of previous sector. Now if integrate (1), & if increment of rotor phase in one timer period is considered then the rotor position within a sector can be obtained as

$$
\theta_{r} = \theta_{s} + n \omega_{h} T_{s} \tag{2}
$$

Where θ_{s} is the absolute rotor angle with in sector limit, n is the steps of integration during the time interval of the present sector and T_{s} is the time of sampling. The rotor position is determined by $\bar{\theta}_{r}$ and follows $\theta_{s} \leq \bar{\theta}_{r} \leq \theta_{s} + \frac{\pi}{3}$.

If the Hall sensors are aligned in the motor symmetrically, the rotor angle estimation from (2) may be notably accurate value at the steady-state operation. But due to variable speed operation misalignment may cause unwanted error. Because in control algorithm like Field Oriented Control, to predict the rotor position the calculated rotor speed is of last section. This implies the non real speed estimation, hence generate the phase delay. This delay is also shown in simulation result below. Also...
error occurred in position estimation if speed is not constant and these variations may be due to acceleration, braking etc. Thus load fluctuation causes the mortification in performance like torque ripple and phase current disfigurement [7], [13].

In this figure, the rotor position is dynamically distorted at each transition state of the Hall sensors' signals. The transient conditions like start-up, speed-up and load change raise the position estimation error since average speed in each sector vary according to operation.

A two-pole PMSM with Hall sensors is shown in Fig. 1, where Φa, Φb & Φc represent the difference of angle between the stator magnetic axes and the misaligned placed Hall sensors analogously. Let’s take out a case of simulation to understand the effect of misalignment. When the angle differences Φa, Φb & Φc were -15, 10, and 10 electrical degrees, respectively, the output of Hall sensor shows the estimated resultant position in Fig. 2.

The state equations of PMSM under stationary frame is
\[
\begin{align*}
\frac{di_a}{dt} &= -\frac{R}{L}i_a + \frac{1}{L}v_a - \frac{K_{sw}}{L}\text{sign}(i_a - i_a) \\
\frac{di_b}{dt} &= -\frac{R}{L}i_b + \frac{1}{L}v_b - \frac{K_{sw}}{L}\text{sign}(i_b - i_b) \\
\frac{di_c}{dt} &= -\frac{R}{L}i_c + \frac{1}{L}v_c - \frac{K_{sw}}{L}\text{sign}(i_c - i_c)
\end{align*}
\]

Where ia & ib are current in α-β axis in stationary frame, va & vb are voltage in α-β axis in stationary frame and ea & eb are back emf on α-β axis. According to sliding mode variable theory [9], state variables are selected as the stator current. The Sliding-mode observer of the PMSM described as:
\[
\begin{align*}
\frac{di_a}{dt} &= -\frac{R}{L}i_a + \frac{1}{L}v_a - \frac{K_{sw}}{L}\text{sign}(i_a - i_a) \\
\frac{di_b}{dt} &= -\frac{R}{L}i_b + \frac{1}{L}v_b - \frac{K_{sw}}{L}\text{sign}(i_b - i_b) \\
\frac{di_c}{dt} &= -\frac{R}{L}i_c + \frac{1}{L}v_c - \frac{K_{sw}}{L}\text{sign}(i_c - i_c)
\end{align*}
\]

Where ia, ib are estimated current on α-β axis, Ksw is slide mode coefficient and sign () is switching function. The dynamic error of the current is obtained by subtracting Eq.5 & Eq.6 and we get,
\[
\begin{align*}
\frac{di_a}{dt} &= -\frac{R}{L}i_a + \frac{1}{L}e_a - \frac{K_{sw}}{L}\text{sign}(i_a - i_a) \\
\frac{di_b}{dt} &= -\frac{R}{L}i_b + \frac{1}{L}e_b - \frac{K_{sw}}{L}\text{sign}(i_b - i_b)
\end{align*}
\]

Where values with ^ shows difference between the observed value of the variable and the actual value. The sliding hyperplane S characterize the current error by switching function as Si=ia-i_a

Applying Lyapunov theory of stability and thus derive of Lyapunov function ‘V1’ obtained as
\[
V_1 = S_i^2S_i < 0 \tag{9}
\]

Therefore using (7), (8) & (9) the range of Ksw can be obtained as Ksw > max (|e_a|, |e_b|) which satisfies the generation of slide mode motion. The system start the slide motion when the slide mode switching status S1=0. Back EMF can be estimated in this mode by using error dynamic equation with i_a & i_b = 0.
Estimated back EMF obtained by the conventional low pass filter has constant cutoff frequency irrespective of rotor speed. Therefore low pass filter with variable cutoff frequency can carry out necessity of wide speed response [10] & EMF estimated as:

\[e_\alpha = \frac{s + \omega_c}{s + s_c} \]

(10)

\[e_\beta = \frac{s + \omega_c}{s + s_c} \]

(11)

Now rotor angle can be estimated by using (10) & (11) as

\[\theta = \theta_0 + \Delta \theta = \arctan(-e_\alpha, e_\beta) + \arctan(\frac{\bar{\omega}}{\omega_c}) \]

Where \(\Delta \theta \) is compensation providing due to phase delay origination from low pass filter. Configuration of PMSM control system with Sliding Mode Observer is shown.

IV. SIMULATION RESULTS

Simulink Model of SMO is shown in fig. 5.

Simulation results show the comparison of angle estimation by both techniques. The comparison between Slide Mode Observer and Hall Effect sensor is performed on PMSM in different operating state.

Fig 6 shows the position estimation of rotor by Hall Sensors in starting condition. The estimated result shows that there is a phase delay in position estimation and starting angle was measured with some ripple. Whereas starting operation by the SMO fails (fig 7) because of presence of noise in estimated speed and noise debilitate the closed loop PMSM control system.

Fig 10 displays the sensor based rotor angle estimation in speed fluctuating state. It is observed that by varying the speed phase error rises in Hall sensor strategy. On comparing the steady state operation with fluctuating speed operation it is discovered that differentiability occurred in phase.
estimation and it is due to phase delay and error in speed prediction. Whereas no such vibrating or deformities observed in SMO technique as shown in fig 11.

![Figure 10: Phase estimation by Hall sensors at speed fluctuation condition](image1)

CONCLUSION

On the basis of simulation result it can be concluded that the PMSM can be operated in starting condition by Hall sensors while SMO is unable to start the motor. Under steady state condition Hall sensors has shown better operation than SMO with no deformity and ripple component. But under speed fluctuation state the control effect of Hall sensors has some distinct deformities which were not occurred under steady state. SMO has shown dominance in speed fluctuation condition with no differentiability in phase estimation. Hence Hall sensors have shown wide ranging application whereas SMO has higher quality result on varying load and speed fluctuation.

REFERENCES